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ABSTRACT
Motivated by current efforts to construct more realistic spam filter-
ing experimental corpora, we present a newly assembled, publicly
available corpus of genuine and unsolicited (spam) email, dubbed
GenSpam. We also propose an adaptive model for semi-structured
document classification based on language model component inter-
polation. We compare this with a number of alternative classifica-
tion models, and report promising results on the spam filtering task
using a specifically assembled test set to be released as part of the
GenSpam corpus.

1. INTRODUCTION
The well-documented problem of unsolicited email, or spam, is

currently of serious and escalating concern1. In lieu of effective leg-
islation curbing the dissemination of mass unsolicited email, spam
filtering, either at the server or client level, is a popular method for
addressing the problem, at least in the short-term. While various
spam filters have begun to find their way onto the market, there is a
lack of rigorous evaluation of their relative effectiveness in realistic
settings. As a result, there is an ongoing research effort to con-
struct representative, heterogeneous experimental corpora for the
spam filtering task. In this paper, we present a sizeable, hetero-
geneous corpus of personal email data to add to the spam filtering
research arsenal, dubbed GenSpam2. We also present and evaluate
an adaptive LM-based classification model for spam filtering, or
more generally semi-structured document classification.

2. RELATED WORK
Some of the first published work on statistical spam filtering was

carried out by Sahami et al. [19] using a multi-variate Bernoulli NB
model. However, the training and test sets were small (less than
2000 total messages), and not publicly available, thus rendering the
experiments non-replicable.

Androutsopoulos et al. [1] present results for spam filtering on
the LingSpam corpus. They compare a multinomial NB classifier
with a kNN variant, the results favouring NB. Carreras and Mar-
quez [4] build on this work, publishing improved results on the
same corpus using boosting decision trees with the AdaBoost algo-
rithm.
1See research by MessageLabs (www.messagelabs.co.uk) and Fer-
ris (www.ferris.com).
2Available from http://www.cl.cam.ac.uk/users/bwm23/
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Drucker et al. [8] publish results comparing the use of SVM’s
with various other discriminative classification techniques on the
spam filtering problem, with binary-featured SVM’s and boosting
decision trees performing best overall. Unfortunately the test sets
they used are not publicly available.

The LingSpam corpus [1] is currently the most widely-used spam
filtering dataset. It consists of messages drawn from a linguistics
newsgroup, and as such the genuine messages are largely homoge-
neous in nature (linguistic discussion) and thus non-representative
of the general spam-filtering problem, where genuine messages
typically represent a wide range of topics. Additionally, the cor-
pus consists predominantly of genuine messages (2412 genuine,
481 spam) whereas in reality the balance is more often in favour
of spam, and is too small to allow experimentation into the impor-
tant issue of how a classifier adapts as the nature of spam and/or
genuine email changes over time and between different users.

In light of the inadequacy of LingSpam and the paucity of public-
ly available, realistic email data for experimental spam filtering,
various efforts have recently been made to construct more realistic
spam filtering experimental corpora, most notably the TREC 2005
spam track corpus and a variant of the Enron corpus[14, 6]. Such
efforts will provide opportunity for a new generation of more real-
istic spam filtering experiments.

The spam filtering problem has traditionally been presented as
an instance of a text categorization problem on the basis that most
email contains some form of identifiable textual content. In reality,
the structure of email is richer than that of flat text, with meta-level
features such as the fields found in MIME compliant messages. Re-
searchers have recently acknowledged this, setting the problem in
a semi-structured document classification framework. Bratko and
Filipic̈ [2] take this approach on the LingSpam corpus, reporting a
significant reduction in error rate compared with the flat text base-
line.

The semi-structured document classification framework is, of
course, applicable to a wider range of problems than just spam fil-
tering, as in [22, 7, 2]. In all these cases the NB classification model
is extended to take account of the componential document structure
in question. We note that the limiting conditional independence as-
sumption of NB can be relaxed in a classification framework based
on smoothed higher-order n-gram language models. This is also
recognised by Peng and Schuurmans [17], who report state-of-the-
art results using a higher-order n-gram based LM text classifier on
a number of data sets. We define a similar classification model,
but extend it into an adaptive semi-structured framework by incor-
porating recursive structural component interpolation. We apply
the resulting classification model to the newly assembled GenSpam
email corpus.



3. A NEW EMAIL CORPUS
The corpus we have assembled consists of:

• 9072 genuine messages (∼154k tokens)
• 32332 spam messages (∼281k tokens)

The imbalance in the number of messages is due in part to the dif-
ficulty of obtaining genuine email - persuading people to donate
personal email data is a challenge. On the whole though, spam
messages tend to be significantly shorter than genuine ones, so in
terms of total content volume, the balance is somewhat more even,
as can be seen from the token count.

The genuine messages are sourced from fifteen friends and col-
leagues and represent a wide range of topics, both personal and
commercial in nature. The spam messages are sourced from sec-
tions 10-29 of the spamarchive3 collection, as well as a batch of
spam collected by the author and compatriots. The messages are
from roughly the same time period (predominantly 2002-2003),
with the genuine messages more widely time distributed, while the
spam messages represent the more recent instances in circulation at
the point the corpus was constructed.

Relevant information is extracted from the raw email data and
marked up in XML. Retained fields include: Date, From, To, Sub-
ject, Content-Type and Body. Non-text attachments are discarded,
though the meta-level structure is preserved. If an email consists
of multiple sections, these are represented by <PART> tags with a
type attribute specifying the section type.

Standard and embedded text is identified and marked up in XML
with <TEXT NORMAL> and <TEXT EMBEDDED> tags re-
spectively. Embedded text is recognised via the ‘>’ marker, with
up to four nested levels of embedding.

Releasing personal, potentially confidential email data to the aca-
demic community requires an anonymisation procedure to protect
the identities of senders and recipients, as well as those of persons,
organisations, addresses etc. referenced within the email body. We
use the RASP [3] part-of-speech tagger as well as finite-state tech-
niques to identify and anonymise proper names, numbers, email
addresses and URLs. The following tokens are used in place of
their respective references:

• &NAME (proper names)
• &CHAR (individual characters)
• &NUM (numbers)
• &EMAIL (email addresses)
• &URL (internet urls)

The From and To fields contain the email addresses of the sender
and recipient(s) respectively. We retain only top level domain (TLD)
information from each field. For US-based sites, the TLD is de-
fined as the string of characters trailing the final dot, i.e. ‘com’
in ‘joe@yahoo.com’. For non-US sites, it is defined as the final
2-char country code, along with the preceding domain type spec-
ification, i.e. ‘ac.uk’ in ‘joe@dur.ac.uk’ or ‘co.uk’ in ‘freecom-
puters@flnet.co.uk’. This allows for potentially useful analysis of
high-level sending and receiving domains, without any individual
identity traceability.

After applying the automatic anonymisation procedures, all of
the genuine messages were manually examined by the author and a
colleague to anonymise remaining sensitive references. This took a
significant amount of time, but resulted in a consensus that the data
was sufficiently anonymous to be publicly released.

It is to be expected that spam filtering with anonymised data is
somewhat more challenging than it would be otherwise, as poten-
3http://www.spamarchive.org

tially useful information is necessarily lost. However, our experi-
ments with both anonymised and unanonymisd versions of GenSpam
suggest that using unanonymised data results in only marginally
better performance (around 0.003 improvement in recall), and that
the difference between classification performance on anonymised
and unanonymised data is not sufficient to cause concern about mis-
representing the task.

<MESSAGE>
<FROM> net </FROM>
<TO> ac.uk </TO>
<SUBJECT>
<TEXT_NORMAL> ^ Re : Hello everybody </TEXT_NORMAL>
</SUBJECT>
<DATE> Tue, 15 Apr 2003 18:40:56 +0100 </DATE>
<CONTENT-TYPE> text/plain; charset="iso-8859-1" </CONTENT-TYPE>
<MESSAGE_BODY>
<TEXT_NORMAL>
^ Dear &NAME ,
^ I am glad to hear you 're safely back in &NAME .
^ All the best
^ &NAME
^ - On &NUM December &NUM : &NUM &NAME ( &EMAIL ) wrote :
...
</TEXT_NORMAL>
</MESSAGE_BODY>
</MESSAGE>

Figure 1: GenSpam representation

Figure 1 gives an example of the GenSpam email representation
in XML format. The corpus is divided as follows:

• Training set: 8018 genuine, 31235 spam
• Adaptation set: 300 genuine, 300 spam
• Test set: 754 genuine, 797 spam

We source the Adaptation and Test sets from the contents of two
users inboxes, collected over a number of months (Nov 2002–June
2003), retaining both spam and genuine messages. We take this
approach rather than simply extracting a test set from the corpus as
a whole, so that the test set represents a real-world spam filtering
instance. The 600 messages making up the adaptation set are ran-
domly extracted from the same source as the test set, facilitating
experimentation into the behaviour of the classifier given a small
set of highly relevant samples and a large background corpus.

4. CLASSIFICATION MODEL

4.1 Introduction
We use the following terminology and definitions:

• Document: a discrete item of information (i.e. a single email
message).

• Token: an atomic unit within a document.

• Class: a well-defined (possibly infinite) set of documents.

A semi-structured document is a singly-rooted tree (see Fig. 2).
Non-leaf nodes represent structural document sections and leaf nodes
represent content bearing sections.

The classification model we present is an interpolated generative
model. That is, non-leaf (structural) node posterior probabilities
are computed as an interpolation of sub-node posteriors, while leaf
(content) node posteriors are estimated in the traditional generative
fashion. The interpolation weights are optimised under the discrim-
inative classification function; consequently the model bears some
relation to the class of hybrid generative/discriminative classifiers,
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Figure 2: Example of semi-structured document

[18]. By incorporating smoothed higher-order n-gram language
models4, local phrasal dependencies are captured without the un-
desirable independence violations associated with mixing higher
and lower-order n-grams in a pure Naı̈ve Bayesian framework [20].
Additionally, through the use of interpolation, we incorporate an
efficient, well-studied technique for combining probabilities to ex-
ploit document structure.

Although we only consider application of the proposed classifi-
cation model to the 2-class classification problem, it readily scales
to the more general N-class problem.

4.2 Formal Classification Model
We make the following assumptions:

1. A document belongs to exactly one class. This is clearly ap-
propriate for spam filtering, though it is in principle quite
simple to extend the model to allow documents to belong to
multiple classes.

2. Classification is carried out within a single domain, and within
that domain, all documents have the same structure.

Given a set of documents D and a set of classes C, we seek
to discover a set of classifications of the type Di → Cj for i =
1 . . . |D| where j ranges from 1 . . . |C| (given assumption 1).

We use the standard Bayes decision rule to choose the class with
the highest posterior probability for a given document:

Decide(Di → Cj) where j = arg max
k

[P (Ck|Di)] (1)

The posterior probability of a non-leaf document node is calcu-
lated as a weighted linear interpolation of the posteriors of its N
sub-nodes:

P (Cj |Di) =

NX
n=1

λn

ˆ
P (Cn

j |Dn
i )

˜
(2)

where
Cn

j is the nth sub-component of class Cj

Dn
i is the nth sub-component of doc Di

λn is the nth sub-component weight

4We use n-grams for efficiency and simplicity, though more ad-
vanced LM technology could be investigated.

An interpolation scheme is used to determine values for the λ’s
(see subsection 4.5).

Leaf-node posteriors are computed via Bayes Rule:

P (Cn
j |Dn

i ) =
P (Cn

j ) · P (Dn
i |Cn

j )

P (Dn
i )

(3)

Cn
j represents a specific leaf node within class Cj , and Dn

i the
corresponding node within the document. Under the structure uni-
formity assumption (2), these are necessarily equivalent.

P (Cn
j ) is the prior probability for the node in question. We take

all node priors within a given class to be equal to the class prior,
i.e. P (Cj).

The document node prior, P (Dn
i ), is constant with respect to

class and thus often ignored in Bayesian classification models; how-
ever, valid interpolation requires true probabilities; thus we retain
it. This carries the additional benefit of normalising for imbalanced
field lengths. For instance, the amount of text in the subject field
is usually significantly less than in the body field and therefore the
class conditional likelihood for the body field will be dispropor-
tionately lower. However, scaling the class-conditional likelihood
of each by the document node prior, which is multiplicatively pro-
portional to the length of the field, counteracts the imbalance.

P (Dn
i ) can be expanded to

|C|X
k=1

P (Cn
k ) · P (Dn

i |Cn
k )

which is the sum over all classes of the prior times the class-conditional
likelihood for the given field.

P (Dn
i |Cn

j ) is the language model probability of the field Dn
i

given Cn
j . In other words, it is the likelihood that the LM chosen to

model field Cn
j generated the sequence of tokens comprising Dn

i .
For our experiments we use n-gram LM’s. The n-gram model is

based on the assumption that the existence of a token at a given po-
sition in a sequence is dependent only on the previous n−1 tokens.
Thus the n-gram LM probability for a K-length token sequence
can be defined (with allowances for the initial boundary cases) as

PN (t1, . . . , tK) =

KY
i=1

P (ti|ti−n+1, . . . , ti−1)

The formula is specialised for n = 1, 2, 3 . . .

4.3 LM Construction
We adopt the basic formalisation for higher-order n-gram smooth-

ing introduced by Katz [13]. This approach has been shown to per-
form well across a number of recognised data sets [5], and is widely
used in mature language modelling fields such as speech recogni-
tion. In the bigram case, the formula is as follows:

P (tj |ti) =

(
d(f(ti, tj))

f(ti,tj)

f(ti)
if f(ti, tj) ≥ C

α(ti)P (tJ) otherwise

where
f is the frequency-count function
d is the discounting function
α is the back-off weight
C is the n-gram cutoff point

For higher-order n-grams the same principles are applied to form
a back-off chain from higher to lower-order models. The n-gram



cut-off point, C, is the threshold below which the observed num-
ber of occurrences is too low to draw reliable statistics from. The
discounting function, d, is used to deduct some of the probabil-
ity mass from observed events, making it available to unobserved
events. We introduce a simple new discounting scheme called con-
fidence discounting which performs well in our experiments, and is
highly efficient to compute:

d(r) =
r

R
ω (4)

R is the number of distinct n-gram frequencies and ω represents
a ceiling on discount mass. For our experiments we use ω = n3

T
where ni is the number of n-grams occuring i times in the training
data, and T is the total number of words.

The discounted probability mass is spread over lower-order dis-
tributions with the back-off weight insuring conformance to the
probability model. A small probability must also be assigned to
events that remain unobserved at the end of the back-off chain. We
can use this to model the likelihood of encountering unknown to-
kens given a particular class. This can be useful in modelling prob-
lems such as spam filtering (see 8.1).

4.4 Adaptivity
A realistic classification model for spam filtering should take ac-

count of the fact that spam evolves over time. It should also ac-
count for the fact that each individual spam filtering instance will
have its own characteristics, due to the variation in email usage,
but at the same time much evidence about the nature of spam ver-
sus genuine email will be common across all (or at least most) in-
stances. In light of this we extend our model to incorporate both a
static and dynamic element. The static element represents evidence
contributed by LMs trained on a large background corpus, while
the dynamic element represents smaller, instance-specific evidence
from LMs that are regularly retrained as new data is accrued.

The decision rule (1) is expanded to:

Decide(Di → Cj) where
j = arg max

k
[λsPs(Ck|Di) + λdPd(Ck|Di)] (5)

The subscripts s and d denote the static and dynamic elements,
which are separate but identically structured estimates, derived from
the static and dynamic LMs respectively. The modified decision
rule can be interpreted as adding a binary-branching recursive top-
level node to the document structure with both branches structurally
identical but using different sets of LMs (Fig. 3). The adaptive de-
cision rule can thus be rewritten as:

Decide(Di → Cj) where j = arg max
k

[P (Ca
k |Da

i )] (6)

with the superscript a denoting use of the adaptive structure.

4.5 Interpolation
The purpose of an interpolation scheme is to optimise the weights

of two or more interpolated components with respect to their per-
formance on a given data set, under a specified objective function
[11]. In our case, a component is represented by the posterior
probability for a particular tree node. We choose the classifica-
tion function itself (under a suitable evaluation metric) as the ob-
jective function, which has the advantage of precisely reflecting
the nature of the problem. On the negative side, the classifica-
tion function is non-differentiable, thus optimality of the interpo-
lation weights cannot be estimated with derivative-based optimisa-
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Figure 3: Example of adaptive document structure

tion techniques which converge to optimality in a reasonably ef-
ficient manner. Rather, we must use an approximation algorithm
to achieve near-optimality. In our experiments we only interpolate
two components (see 6) so a simple hill-climbing algorithm suf-
fices. However if a greater number of fields were utilised, a more
complex algorithm would need to be investigated.

To maintain efficiency, we estimate interpolation weights in a
bottom-up fashion, propagating upwards through the structural tree
rather than iteratively re-estimating throughout the whole structure.

5. COMPARISON
To provide a frame of reference for the performance of our clas-

sification model, we also present results for the multinomial naı̈ve
Bayes (MNB), support vector machine (SVM) and Bayesian logis-
tic regression (BLR) classification models on the GenSpam corpus.

5.1 MNB
Multinomial naı̈ve Bayes is commonly used as a baseline in clas-

sifier comparisons, due to its ease of implementation and computa-
tional efficiency. It tends to underperform more sophisticated tech-
niques as it often suffers from overfitting and excessive bias.

5.2 SVM
Support vector machines [21] have yielded state of the art results

on various classification tasks over recent years. They are robust to
overfitting and reasonably efficient especially for small to medium
sized datasets.

5.3 BLR
Bayesian logistic regression is a technique that falls into the fam-

ily of regression techniques for classification. A prior over feature
weights is used to prefer sparse classification models and thus avoid
overfitting and increase efficiency. Such a model was shown to per-
form competitively with the state of the art on various TC datasets
in [10].

5.4 Implementation
We will henceforth refer to the classification model presented in

this paper as ILM (Interpolated Language Model), which we have
implemented in perl. We have also implemented our own version
of MNB following the standard model [16], and use Joachims’
SVMlight [12]5, reporting results for the best performing linear

5http://svmlight.joachims.org/



kernel. We use the open source implementation of Bayesian lo-
gistic regression, BBR (Bayesian Binary Regression) provided by
Genkin et. al [?]6.

6. EXPERIMENTAL METHOD
We use held-back sections of the training data to tune the ILM

hyperparameters: unseen term estimates, n-gram cutoff and inter-
polation weights, as well as the regularization parameter in SVMlight.
MNB doesn’t have any hyperparameters, and BBR has an inbuilt
‘–autosearch’ parameter to optimise the prior variance via 10-fold
cross validation. We then evalute each of the classifiers on the test
data in three sets of experiments, using as training data:

1. Just the Training data
2. Just the Adaptation data
3. A combination of both

6.1 Data
Our experiments make use of only two email fields - Subject and

Body. These are of primary interest in terms of content, though
other fields such as From, To, Date etc. are also of potential use.
This is an avenue for further research.

We pre-process the corpus by removing punctuation and tokens
that exceed 15 characters in length. We do not carry out stopword
removal as it had a significantly detrimental effect on performance,
especially in the SVM case. This is presumably due to the fact
that stopword usage differs between spam and genuine email, and
exemplifies the disparity between spam filtering and traditional text
categorization.

The ILM and MNB classifiers do not require scaling or normal-
isation of the data. For SVM and BLR, we construct tfc-weighted
(normalised tf∗idf ) input vectors.

7. EVALUATION MEASURES
The binary classification task is often evaluated using the accu-

racy measure, which represents the proportion of documents cor-
rectly classified. We also report recall for each class separately,
defined in the usual manner:

accuracy =
TP
T

recall(c) =
TPc

Tc

where TP is the number of true positives, T the total number of
documents, TPc the number of true positives in class c and Tc the
number of documents in c.

Assessing the recall performance of the classifier on spam and
genuine email separately is important in the area of spam filtering,
where high recall of genuine messages is of utmost importance.
This imbalance in the nature of the task necessitates evaluation
schemes that recognise the asymmetric cost of misclassification.

8. RESULTS AND ANALYSIS
We present results for the various classifiers on the GenSpam

corpus under symmetric and asymmetric evaluation schemes.

8.1 Hyperparameter Tuning
We varied certain features of the ILM classifier and observed

results on held-back sections of the training data to determine the
better-performing configurations. The results led us to draw a num-
ber of conclusions:

6http://www.stat.rutgers.edu/ madigan/BBR/

• We use only unigram and bigram language models, as higher
order n-gram models degrade performance due to excessive
sparsity and over-fitting.

• Intuitively, we might expect spam to contain more unknown
words than genuine email, due to the additional lexical noise.
The LM unseen event probability can be used to model this
phenomenon. We optimise unseen event probabilities empir-
ically from held out sections of the training data, and arrive
at the following values:

Unigram GEN 1× 10−8

SPAM 1.2× 10−8

Bigram GEN 1× 10−8

SPAM 1× 10−7

• The discrepancy in LM size between different classes as a
result of unbalanced training data can lead to classification
errors because parameters in larger LMs receive proportion-
ally less of the overall probability mass. This is especially
noticeable in higher-order LMs where the potential feature
space is much larger. One method for countering this is to
raise the n-gram cutoff point (see 4.3) for the larger class.
We call this technique LM balancing, and found it to have a
positive effect on performance for bigram LMs. Hence, we
use C=1 for GEN and C=2 for SPAM in the body field LMs
generated from the Training dataset, and C=1 for all other
LMs.

After tuning on held-back sections of the training data, we use
the linear kernel and choose the value C=1 for the regularization
parameter in SVMlight. We use a Gaussian prior distribution and
the ‘–autosearch’ parameter in BBR to optimise the prior variance
via 10-fold cross validation.

8.2 Symmetric Classification
Table 1 displays the performance of the classifiers on the Test

dataset under the standard symmetric evaluation scheme. For the
Combined results we merge the Training and Adaptation sets in the
case of MNB, SVM and BLR, and combine them by the adaptive
decision rule (5) for ILM.

The amount of adaptation data is too small to reliably estimate
interpolation weights for the adaptive decision rule. In practice,
therefore, we would set these manually. Given that the distribution
of interpolation weights can be interpreted as a probability distribu-
tion with each weight representing the probability that a particular
component contains relevant information, we choose the distribu-
tion that is most uncertain, governed by the principle of maximum
entropy. Without any prior knowledge about the optimal weight
distribution, this equates to balancing the component weights.

As expected, MNB is highly efficient, but performs somewhat
worse than the best performing model in each category.

The SVM classifier performs well when trained only on the Adap-
tation data, but relatively poorly when trained on the Training data.
This is because the Adaptation set has certain properties that suit
the SVM model: the distribution of the training data matches that
of the test data (they are both roughly balanced), the data is linearly
separable and the diminutive number of training samples allows
the wide-margin effect to have a significant impact. Conversely,
the Training set does not particularly suit the SVM model: the
training distribution does not match the test distribution and the
training data is unbalanced and non linearly separable. It has been
shown empirically that the SVM model chooses a suboptimal de-
cision boundary in the presence of divergence between the training
and test distributions [9] and this is supported by our results.



Training Data Classifier GEN recall SPAM recall accuracy

Training

MNB 0.9589 0.9322 0.9452
SVM 0.9005 0.9837 0.9433
BLR 0.8926 0.9862 0.9407
ILM Unigram 0.9496 0.9674 0.9587
ILM Bigram 0.9735 0.9636 0.9684

Adaptation

MNB 0.9682 0.9335 0.9504
SVM 0.9854 0.9724 0.9787
BLR 0.9642 0.9737 0.9691
ILM Unigram 0.9775 0.9373 0.9568
ILM Bigram 0.9682 0.9649 0.9665

Combined

MNB 0.9629 0.9297 0.9458
SVM 0.9310 0.9887 0.9607
BLR 0.9244 0.9887 0.9574
ILM Unigram 0.9907 0.9674 0.9787
ILM Bigram 0.9854 0.9737 0.9794

Table 1: GenSpam Test set results (best results for each dataset in bold)
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Figure 4: ILM recall (GEN and SPAM) and accuracy under adaptive weight interpolation

The results for BLR are quite similar to SVM in these experi-
ments, though slightly inferior. Estimation of the prior variance by
cross validation does improve performance, though it dramatically
increases training time.

The ILM classifier performs competitively across the board, and
particularly when the adaptive decision rule is used. Figure 4 plots
classification performance as a function of the adaptive interpola-
tion component weight, so that x = 0 represents only the Training
models and x = 1.0 represents only the Adaptation models. For
both unigram and bigram LMs, the ILM classifier benefits from the
combined estimates; however the benefit is most significant in the
unigram case. It is interesting to note that both classifiers reach a
performance peak at the point where the static and dynamic weights
are balanced, i.e. when there is an equal contribution from both
models.

8.3 Asymmetric Classification
While the symmetric results are informative, they do not present

a realistic view of the spam filtering problem, in which the cor-
rect classification of genuine mail is of much greater import than
the occasional misclassification of spam. There are a number of
ways to evaluate spam filters in the presence of asymmetric mis-
classification cost; we will use a scenario in which a predefined

recall threshold for genuine mail must be reached by the classifier.
We set this threshold at recall=0.995 i.e. we allow, on average, no
more than one genuine message in every 200 to be misclassified.

We control the bias in the MNB, SVM and BLR classifers by
adjusting the decision threshold at a granularity of 0.001. The SVM
model can also be biased by increasing the misclassification cost
for a given class (-j option in SVMlight); however we found that
even for highly skewed values of this parameter (ratio of 1/1000)
the requisite genuine mail recall threshold remained unreached.

The language modelling aspect of the ILM classifier allows var-
ious ways of biasing of the model in favour of a given class. We
control the bias by reducing the unseen term estimate for the SPAM
body LMs until the genuine threshold is reached.

Table 2 displays the results of biasing the models to reach the
genuine mail recall threshold. The full ILM model, trained on the
combined static and dynamic data, significantly outperforms any
of the other classifiers, with the accuracy of the bigram variant ac-
tually increasing as the genuine recall threshold is reached. This
suggests that the ILM classifier is well suited to the spam filtering
task.

Figure 5 plots the receiver operator characteristic (ROC) curves
for each of the best-performing classifier configurations (BLR and
SVM – adaptation data; ILM – combined data). This provides fur-



Training Data Classifier GEN recall SPAM recall accuracy

Training

MNB 0.9960 0.1556 0.5642
SVM 0.9960 0.7064 0.8472
BLR 0.9960 0.8105 0.9007
ILM Unigram 0.9960 0.7340 0.8614
ILM Bigram 0.9960 0.8331 0.9123

Adaptation

MNB 0.9960 0.4090 0.6944
SVM 0.9960 0.9147 0.9491
BLR 0.9960 0.9097 0.9542
ILM Unigram 0.9960 0.8269 0.9091
ILM Bigram 0.9960 0.8934 0.9433

Combined

MNB 0.9960 0.4103 0.6950
SVM 0.9960 0.8808 0.9368
BLR 0.9960 0.9021 0.9478
ILM Unigram 0.9960 0.9573 0.9761
ILM Bigram 0.9960 0.9674 0.9813

Table 2: Asymmetric results (best results for each dataset in bold)

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

SP
AM

 re
ca

ll

GEN recall

SVM
BBR

ILM (unigram)
ILM (bigram)

Figure 5: Classification ROC curves

ther evidence of the effectiveness of biasing the language models
by adjusting unseen word estimates, as opposed to biasing the deci-
sion boundary. Both the unigram and bigram ILM classifiers, when
trained on the combined data, are able to maintain high genuine
recall values without sacrificing overall accuracy.

9. DISCUSSION
Interpolating LM-based structural components provides a nat-

ural way to efficiently combine estimates from different distribu-
tions. With n-gram LMs, the classifer uses efficient maximum
likelihood estimation and hence has a training and classification
time complexity roughly linear in the input size. However, an ap-
proach such as the one presented in this study has its drawbacks, as
it requires estimates for a significant number of hyperparameters.
These must be derived either empirically or by potentially expen-
sive cross validation. The parametricity of the ILM model also
makes it potentially sensitive to changes in the nature of the prob-
lem domain, a relevant issue when dealing with the ever-changing
nature of spam, and email in general. An obvious line of future
research is to investigate methods for estimating the ILM hyperpa-
rameters both robustly and efficiently.

Bearing in mind the success of the ILM classifier at combining
evidence from distinct training distributions, it would be interest-
ing to investigate analagous techniques for discriminative models
such as the SVM and BLR. A possible starting point would be to
examine the effects of combining judgements from separate SVM
or BLR models trained on distinct data. An interpolative method
could potentially be used in this setting, which would not harm the
tractability of the base classifier, though it would introduce new hy-
perparameters. A further avenue of research is to investigate alter-
native methods of biasing the discriminative classifiers to improve
their asymmetric performance. One possible approach would be
to investigate recent research into utilising uneven margins in the
SVM model [15]. This technique has shown some promise when
dealing with skewed training data, though it has not been examined
in the context of handling asymmetric classification costs.

10. CONCLUSIONS
We have presented a new corpus of genuine and unsolicited email,

GenSpam, which we hope will aid in providing opportunity for
more realistic spam filtering experiments and ultimately enhance
efforts to build more effective real-world spam filters. Obtaining
spam is relatively easy, and a potentially important task for the fu-
ture is to update the corpus with more recent spam, improving its
relevance. We believe that the anonymised genuine email content
represents a significant contribution in itself, and may be useful for
a wider range of NLP tasks than just spam filtering.

We have also presented an efficient, adaptive classification model
for semi-structured documents that extends similar work in the semi-
structured and hybrid generative/discriminative classification fields.
We demonstrate that our classifier is effective at combining evi-
dence from distinct training distributions (an important attribute for
adaptive classification), and experiments on GenSpam suggest that
the model is well suited to spam filtering, maintaining high levels
of genuine recall without loss of overall accuracy.
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